On Aspect-Oriented Software Architecture:
it Implies a Process as well as a Product

Masami Noro

Dept. Info. & Telecomm. Eng.
Nanzan University
27 Seirei-Cho, Seto
Aichi 489-0863, JAPAN

yoshie@nanzan-u.ac.jp

Abstract

We assume that software architecture is a set of as-
pects which represent concerns multiple-dimensionally
separated. Moreover, software architecture is assumed
to be not just a product model but it also implies a soft-
ware process for its implementation. We view the ar-
chitecture as a set of aspects connected via join points.
In this sense, the aspect is the composite component
and the join point is the connector. The aspect, in
turn, consists of a set of components from different
abstraction level of the development stage. A connec-
tor implies an order of the development of connected
components. Based on this assumption, the architec-
ture (connectors) is to define a partial-order process
for the development. This paper describes the idea
which tells how a software architecture defines soft-
ware process in the context of aspect-orientation. We
demonstrated how it works with several examples.

1 Introduction

Software architecture has been a promising ap-
proach to software engineering problems[5, 14]. In
these days, Post-Object Programming technologies|[3],
aspect-oriented programming in particular, is rec-
ognized as another promising approach to the
problems[2]. Through the observation of several soft-
ware development projects[10, 13], we realized that to
apply an aspect-oriented concept to software architec-
ture is not just yet another but one of “the” promising
approaches to the problems.

We have demonstrated with several projects that
a software architecture is not just a product model
but implies a software process[9, 10]. In the projects,

Atsushi Kumazaki

Dept. Info. Sys. & Quant. Sci.
Nanzan University
18 Yamazato-Cho, Showa-ku, Nagaya
Aichi 466-8673, JAPAN
d00bb002@iqg.nanzan-u.ac.jp

we found that a software architecture consists of
a set of aspects which represent concerns multiple-
dimensionally separated. In an aspect-oriented sense,
a component of a software architecture is an aspect
and a connector is a set of join points (pointcut). As a
result, an aspect-oriented software architecture is not
just a product model but implies a concurrent software
process.

There are several related research projects on
aspect-oriented software architecture[12] and aspect-
oriented application frameworks[l, 11]. Navasa and
Nakajima put much emphasis on construction process
of architecture or framework. Constantinides gives an
idea how to implement an application framework with
a design pattern (Factory Method)[1]. These research
projects are fruitful but they just talk about product
view of software development. We also introduces ar-
chitecture style employing aspect-oriented concept. It
is not a yet another research on aspect-oriented soft-
ware architecture because we also introduces process
view of software development based on our architec-
ture.

This paper is intended to describe what our def-
inition of aspect-oriented software architecture is, to
show how it implies a concurrent software process, and
to discuss advantages of an aspect-oriented software
architecture. In summary, an aspect-oriented software
architecture implies a set of concurrent software pro-
cesses which are for the development of each aspect.
The processes are connected by the activity to imple-
ment a set of join points which associates the aspects.
A case study to define an aspect-oriented software ar-
chitecture for TCP /IP applications is given to validate
our idea.

2 What is Software Architecture ?

From the experience obtained when we defined do-
main specific software architectures[9, 10, 13], we real-
ized that a software architecture is not just a product
model but also a container including a process plan-
ning scenario. The insight we gained meets the defini-
tion by the SEI discussion group in '94 of a software
architecture that “the structure of the components of
a program/system, their interrelationships, and prin-
ciples and guidelines governing their design and evo-
lution over time.” This results in the paradox that a
product defines a process, and we conclude from this
that:

— shapes of components vary vertically across de-

velopment stages,

— interrelationships (connectors) bridge between
one stage and another, and

— they, in combination, implicitly show the order of
component construction.

In Fig.1, we abstract a software architecture which
defines a process. We assume object-oriented software
development here. As shown in the figure, the soft-
ware architecture includes components from the soft-
ware model, the implementation stage, and the de-
sign result. The software architecture shown in Fig.1
indicates the process for developing the software ab-
stracted in the architecture. We can easily see where
design and implementation are needed component by
component. The general scenario of the development
can be stated as follows.

— Extract implementation-level component and
plan to select the appropriate class or component
library. Or, implement another subclass in a hi-
erarchy.

— Implement classes and their hierarchy for the
design-level component.

— Carry out the design and implementation for a
component from the software model.

These three activities can be performed concurrently.
Termination of all these activities triggers the coordi-
nation of the component. Then, we will proceed to
testing and operation.

2.1 Aspect and Architecture

In our definition of an aspect-oriented software ar-
chitecture, a software architecture is composed of a
set of aspects. In this sense, an aspect is a compos-
ite component and a join point is a connector. Here,
“composite” means that an aspect is a set of compo-
nents. An abstraction level of a component may differ
from that of another component. As described above,

Software Model

g Software Architecture

Design

=

i Implementation
F—"~

g{%
4

Figure 1: Software Architecture

there are several types (actually, a type of a connec-
tor is defined by abstraction levels of components the
connector links) of connectors which define the devel-
opment process. For the sake of simplicity, we do not
assume aspects are nested. Fig.2 cartoons an example
of our aspect-oriented software architecture.

Aspect 2

Join Point 24 Join Point 23
@ Join Point 34
Aspect 4 Aspect 3

Figure 2: Aspect-Oriented Software Architecture

Once determined inter-aspect protocol in a point-
cut, crosscut aspects can be developed in concur-
rent. That is, to define an inter-aspect protocol in
join pointl12 of Fig.2 must precede the development

of Aspectl and Aspect2. Two aspects can be con-
currently implemented after the definition. The de-
velopment process of each aspect, in turn, can be de-
fined from hetero-links (connectors in different types)
among components.

3 How Architecture Implies Process

As introduced in the previous section. hetero-links
imply an “inner” software process for the development
of an aspect. From aspect-oriented view, a join point
is a connector and the relationship among aspects de-
fines an “outer” software process. That is, the outer
software process describes a partial order of aspect
development, and another partial order of component
development is given in the inner software process.

3.1 Primitive Rules to Decide Process

Aspect 2

Join Point I:>

Define
Joint Point

Software Process
for Aspect 1

Software Process
for Aspect 2

o

Figure 3: A Primitive Process-Derivation Rule for As-
pects

For Aspects

If two aspects crosscut each other, inter-aspect pro-
tocol on the join point which associates the aspects
must be defined first. Then, each aspect can be devel-
oped simultaneously. Fig.3 shows a primitive process-
derivation rule for aspects. We borrow the activity
diagram in RUP to describe a process.

For Components

For software process definition of components, an ab-
straction level is a key to derive the process. Here
we assume that there are tree levels of abstraction:
model, design, and implementation. A model-level
component (a component from an abstraction level of

—Y—

a Component

Design Specification
for a Component

Implementation
of a Component

(a) for Model-Level Component

a Component | ——— Implementation
of a Component

(b) for Design-Level Component

Customization
of a Component

a Component

(c) for Implementation-Level Component

Figure 4: Primitive Process-Derivation Rule for Com-
ponents

model) has neither its design specification nor its im-
plementation. A design specification is given but its
implementation is not done yet in a design-level com-
ponent. Customization is needed, in general, for an
implementation-level component.

To implement a model-level component, its design
specification is needed first and then it is implemented.
A design-level component is implemented on its de-
sign specification. An implementation-level compo-
nent is customized if needed. These primitive process-
derivation rules are shown in Fig.4.

3.2 Rules for Organizing Processes

There are nine (3 x 2 + 3) use-relations (send-
message-relations) among components in three lev-
els of abstraction. Three relations are ones for the
same level of abstraction (e.g. a model-level compo-
nent uses another model-level component.) Other six
are for components from different level of abstraction
(e.g. a model-level component uses a design-level com-
ponent and vice versa.) If a model-level component

(MC1) uses another model-level component (MC2),
both MC1 and MC2 are required to give design spec-
ifications and their implementations. Since MC1 uses
MC2, MC1’s specification should be given first, and
then MC1 and MC2 can be implemented. For MC2,
it can be implemented after its design specification is
given and MC1’s specification is understood. Fig.5
shows the software process obtained from a relation in
which a model-level component uses another model-
level component. Software processes for other cases
are also given in an Appendix. DC stands for design-
level component and IC is for implementation-level
component in the Appendix.

?
! !

Design Specification Design Specification
l — of MC2 of
uses
Understand MC2's
Specification

Implementation
of MC1

Implementation
of MC2

A Model-Level Component Uses another Model-Level Component

Figure 5: Software Process Organization Rule

In an aspect-oriented software architecture, soft-
ware processes for the development of aspects are com-
bined into a software process for the architecture. Def-
initions for inter-aspect protocols (join points) precede
the processes for the aspects. If a software architec-
ture consists of three aspects crosscutting one another
and each aspect is composed of components as in Fig.6
(a), the software process will be one shown in (b).

4 Aspect-Oriented Software Architec-
ture for TCP/IP Application

To demonstrate that our idea of aspect-oriented
software architecture is reasonable, we show an ex-
ample of TCP /TP application for which we have con-
structed the software architecture[10]. In our previ-
ous architecture, an object-oriented concurrent model
was adopted for TCP/IP applications. We modeled a

TCP/IP application as a set of concurrent objects on
isolated machines. The objects was conceived as state
transition machines. The resultant architecture was
domain-specific layered model.

Through the construction of a software architecture
for TCP/IP applications, we realized that several con-
cerns crosscut more than one layer. They are security,
input handling, and so on. In the following sections,
we treat those concerns as well as component of dom-
inant decomposition as aspects in thr aspect-oriented
software architecture for TCP/IP applications.

4.1 Three Views of Software Architecture

To represent a software process in a software ar-
chitecture, our software architecture includes the fol-
lowing three views: abstract view, concrete view and
process view. It is an improved and revised version of
Kruchten’s definition[8]. The reason why we did not
use Kruchten’s definition of an architecture is that his
definition assumes the same level of abstraction for
the components of the architecture and a single type
of connection among the components.

In our model, the abstract view corresponds to
component-connector model of the software architec-
ture. As mentioned earlier, a component comes from
one of any development stages, while a connector ver-
tically and/or horizontally ties components together.

The concrete view identifies abstraction level of a
component. It shows component’s abstraction level by
presenting what kind of technique can be applied to
design and/or implement a component. As a result,
connectors would be hetero-links which are keys for
defining a software process.

The software process to implement the architecture
being defined is derived from concrete view. Process
view holds the process that shows the partial order of
component development.

We also uses these three views for defining an
aspect-oriented software architecture.

4.2 Aspects in TCP/IP Application

Here, we describe just the aspect-oriented software
architecture for a client of a TCP/IP application to
save the space without loss of generality.

The following concerns are recognized through ob-
serving the implementation of the layered architec-
ture. Since a TCP/IP client is generally an interactive
software, to use the MVC architecture[6] is natural
idea to design and implement. In the MVC archi-
tecture, Model, View, and Controller are major com-
ponents and they are components realizing separated

Aspectl

J

IC1
—
"""""""" Join Point 23
Join Point 13 Ic2 Del
- Aspect3
(a) an Aspect-Oriented Software Architecture
l l Aspect3

Implementatlon

Implementation)
ofDCL)i

Design
Specification
for MC2

Join Point 13 Join Point 23
Definition Definition)

L

Pointcut i
Definition

Aspectl
Implementation

Understand
of IC1

Design
Specification
for MC1

{(Implementation Implementatlon
of DC2 of MC2
Implementation Aspect i L
of MC1 Definition)i ... - Aspect2

Implementation

®

(b) Software Process Implied by the Architecture

Figure 6: Aspect-Oriented Software Architecture and its Development Process

concerns. Controller and View are also concerns in
our aspect-oriented architecture. Model is further de-

opment.

. . e An action corresponding to an event:
composed into multiple concerns.
e Controller: This concern is about MVC’s Con- How actions are realized is one of con-
troller. cerns whether or not it is separated.
e View: This is MVC’s View. . .
e Input handling: e Remote object access: A method for realizing re-
. mote object access is a concern.

A TCP/IP client has two pgrts to ac- e Data communication:

cept data input, a standard input and

a communication socket. This concern This concerns about what kind of data

is about how to handle those two ports: communication protocol to be imple-

doing selective wait, implementing mul- mented. It should be compatible to ex-

tiple threads for the ports, or so forth. isting TCP /IP applications, or it is not.
e State transition machine: e Error processing:

Since we assume that a TCP/IP ap- . .

R . This concern is on how errors such as
plication is a set of concurrent objects . . .
; ; O) timed-out during data communication
which realize state transition machines, .
. . are implemented.
how to describe state transition ma-
chine is a major concern in its devel- e Efficiency:

The efficiency concern is on a non-
functional requirement. This is about
how data communication is imple-
mented in an efficient way at running
time.

e Security:

It is another concern on another non-
functional requirement. How to imple-
ment a secure TCP/IP application is
this concern.

Fig.7 shows these concerns, aspects, and their rela-
tionships in a TCP/IP application. As in the figure,
an aspect is a container to implement several concerns
(a single aspect may be used to realize a single con-
cern.) Concerns are collected into a single aspect if
concerns do not crosscut one another. Concerns in an
aspect are related one another. To relate means that
one of components which realize a concern uses (sends
a message) to one of other components implementing
another concern, or vice versa. An arrow in the figure
means that the component(s) implementing a concern
which is a source of an arrow uses one of the compo-
nents which realize a concern at the destination of the
arrow. If multiple arrows converge on a concern, the
concern is crosscut.

Controller%

Controller

ﬁﬁlnput Handling

Application Logic ™

View i— l State v
State Transition

Action €——t—T Transition Machine Input Handling

Machine A

!

N | N

Remote Object Access

Data Communication

Error Processing
5 Efficiency

Communication

Security <—

Security

Figure 7: Concerns, Aspects, and their Relationships
in a TCP/TP Application

4.3 Abstract View of TCP/IP Applica-
tion Architecture

Our aspect-oriented software architecture for a
TCP/IP application is aspect-oriented version of the
architecture we previously constructed[10]. We bor-
row portions of the previous architecture to draw the
aspect-oriented architecture.

Fig.8 outlines a part of our aspect-oriented architec-
ture for a client. StdInin the figure implements a class
for standard input . Class Com encapsulates a user in-
put and is passed to ComResTable. ComCreator makes
an instance of Com and passes it along to ComResTable.
ComResTable has to have a possible set of Com and
Action. In fact, the table includes the algorithms for
creating an Action object rather than simply action
itself. We designed it this way because the algorithm
for the creation procedure is application dependent.
The strategy pattern is for storing an algorithm in an
object. We use the pattern to implement Strategy
which makes an instance of Action from a Com object.
STM stands for a state transition machine and holds
multiple States. InputHandler implements selective
wait and character read.

e Controller

Controller }—{ Stdin ‘
[1

‘ Com ComCreator

Strategy :‘ ComResTable

STM State InputHandler
Transition

Machine
@_

—Application Logic R4

Input Handling

Figure 8: Part of Abstract View of TCP/IP Client
Architecture

4.4 Concrete View of TCP/IP Applica-
tion Architecture

The concrete view defines the implementation tech-
niques that must be employed for the development of
software based on the architecture. That is, the view
indicates what kind of techniques must be used for

Application Framework

Controller

Stdin

Com lgemnmmmnnnn ComCreator H
Strategy-Action :

I ComResTable - i
T after
S N T N ——— R

join point

StdIn-InputHandller
join point

210J8q

Y ST™M

Stratégy-STM
join point

InputHandler
Generator

@
after

State

——Application Framework;‘\/

State-Action
join point

Ordinal Implimentation

Figure 9: Part of Concrete View of TCP/IP Client Architecture

the implementation of the components in the abstract
view.

The controller aspect and application logic aspect
include application dependent objects. Since they are
heavily application-dependent, we apply the technique
of application framework for the implementation of
these two aspects. Since a hotspot of a framework has
design specification but its implementation, a design-
level component, corresponds to the hotspot.

State transition machine can be generated from its
specification. We could find out such generators here
and there. Since the specification given to the gen-
erator could be graphical and understandable, they
prefers the generator to other development techniques
such as libraries, application framework, etc. Gener-
ated components are implementation-level component
since they do not need further code writing. We as-
sume that generated codes are written in the state
pattern[4].

Input handling aspect is platform-dependent. We
are forced to design and implement it from scratch.

Fig.9 sketches a part of TCP/IP application archi-
tecture’s concrete view. It shows abstraction levels to
the components and arrows which represent develop-
ment process.

Assume that class Strategy has a method
createAction which is for making a new Action in-
stance, and class State has a method trans for state
transition, and Action has a method doIt to invoke it.

The aspect ApplicationLogic may be described as
the following if we borrow the notation of AspectJ[7].

aspect Applicationlogic {
pointcut create(Strategy s)
instanceof (s) &&
receptions(Action createAction(s));

after(Strategy s) returning(Action a)
create(s) {
a = new Action(s);

}

pointcut fire(State s, Action a)
instanceof (s) && receptions(void trans(a));

after(State s, Action a) : fire(s, a) {
a.doIt();
}
}

4.5 Process View of TCP/IP Application
Architecture

Fig.10 shows a aprt of development process which
can be drawn from the concrete view in RUP.

4.6 Implementation

There are several ways to implement an aspect-
oriented software architecture. One of the most natu-

]

]

Controller

Strategy-Action
Join Point Definiti

3¢

Join Point Definition

State-Action Strategy-STM StdIn-InputHandler
Join Point Definition || Join Point Definition

Implementation l

Understand

Specification

Understand
Specification
of ComCreator '
Customization |; :
of Strategy)i :
Customization Customization
of ComResTable, of ComCreator

of Strategy

Customization
of Action

Design
Specification
for InputHandler

v ,
Generation of
STM and State)

State Transition

Application Logic |
Implementation

Machine (STM) |
Implementation :

Pointcut
Definition Implementation of

InputHandler

Input Handler :
Implementation=---+=*

Aspect
Definition

)

Figure 10: Part of Process View of TCP/IP Client Architecture

ral ways is to implement in aspect-oriented program-
ming languages such as AspectJ, AspectC++[15] and
so on. However such implementation would be lan-
guage dependent.

Instead, we have implemented our aspect-
oriented TCP/IP application architecture with Fac-
tory Method as in [1]. This way of implementation
does not lose language independence and as a result
it preserves practicality with state-of-the-art (aspect-
oriented) technology.

5 Discussion

The advantage of aspect-oriented programming is
that we can separately implement crosscutting con-
cerns. The implementation would be flexible enough
to do away with future maintenance. The advantage
is, however, in the programming language level. Soft-
ware architecture, on the other hand, contributes to
get shortcut to the development. We could skip re-
quirements definition and design of a system. There
is, however, a problem that we cannot always find
out an orderly-fashioned software architecture in all
application domains. Non-functional requirements al-
most always lead the architecture to ill-structured one.
To apply the aspect-oriented concept to earlier stages
enables us to encounter an aspect-oriented software
architecture. With the aspect-oriented concept, we
cloud find out a sound architecture for the domain
where we could not. The case study in the previous
section tells us the limitation of layered architecture

and the powerfulness of aspect-oriented software ar-
chitecture.

In addition to the advantages obtained by the mar-
riage of aspect-oriented concept and software archi-
tecture, we could get an advantage on software pro-
cess. We have proposed that a software architecture
is not just a product model but implies its software
process[10]. To assume a software architecture as a set
of components having different abstraction levels and
different types of connectors yields a partially-ordered
process for software development. A concurrent soft-
ware process whose subprocesses are also concurrent
could be drawn with an aspect-oriented software ar-
chitecture as described in the previous section.

6 Conclusion

We introduced our idea on aspect-oriented software
architecture. We have shown that the aspect-oriented
software architecture gave us a well-formed software
architecture of what we could not get without the
aspect-oriented concept.

A software architecture implies a software process
if the architecture is defined as a set of components
connected by different type of connectors in different
level of abstraction. A concurrent software process can
be implied by an aspect-oriented software architecture
which is, in our definition, a set of aspects representing
concerns multiple-dimensionally separated.

Future research topics on the aspect-oriented soft-
ware architecture include the following.

— To apply our idea of aspect-oriented software ar-
chitecture to other domains.

We are now constructing another
domain-specific aspect-oriented soft-
ware architecture for a Web-based
information system. The architec-
ture would sort unordered Web-related
software development techniques and
would give us concurrent software pro-
cess for the WIS development.

— To design and implement an aspect-oriented ar-
chitecture centric software development environ-
ment.

A software process is a key to the inte-
gration of software tools in a develop-
ment environment. An aspect-oriented
software process, in our definitions,
implies a concurrent software process.
Those mean that we could integrate
software tools on the aspect-oriented
software architecture. We draw a big
picture in which multiple development
personnel check in and out software
repository reflecting the architecture.
The process scenario is embedded in
the mechanisms on checking in and out.

Appendix : Software Process Organiza-
tion Rules

Acknowledgements

Here we thank our colleague, Takeshi Tomonaga,
who helped us to format diagrams in the paper.

References

[1] C. Constantinides, A. Bader, T. Elrad and M.
Fayad “Designing an Aspect-Oriented Framework
in an Object-Oriented Environment,” Computing
Surveys 32, 41, 2000.

[2] T. Elrad, R. E. Filman, A. Bader, Eds., Special
Issue on Aspect Oriented Programming, CACM,
Vol. 44, 2001.

[3] K. Czarnecki and U. W. Eisenecker, Generative
Programming: Methods, Tools, and Applications,
Addison Wesley, Boston, 2000.

[4] E. Gamma, et. al, Design Patterns, Addison Wes-
ley, 1995.

!
! !

Implementation Understand
of DC2 DC2's Specification

Implementation

of DC1

o

(b) A Design-Level Component Uses another Design-Level Component

?

IC1 l l

Customization Understand
of IC2 IC2’s Specification

Ic2 Customization

of IC1

0

(c) An Implementation-Level Component Uses another Implementation-Level Component

[5] D. Garlan and D. E. Perry Eds., Special Issues
on Software Architecture, IEEE Trans. Soft. Eng.,
Vol. 21, No. 4, 1995.

[6] G. E. Krasner and S. T. Pope, “A Cookbook for
Using the Model-View-Controller User Interface
Paradigm in Smalltalk-80,” J. of Object-Oriented
Program, Vol. 1, No. 3, pp.22-49, Aug./Sep. 1988.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm and W.G. Griswold,“An Overview of As-
pectJ”, in Proceedings of the Furopean Confer-
ence on Object-Oriented Programming(ECOOP),
Springer-Verlag. Hungary, 2001.

[8] P. B. Kruchten, “The 441 View Model of Archi-
tecture,” IEEFE Software, Vol. 12, No. 6, pp.42-50,
Nov. 1995.

[9] A. Kumazaki, M. Noro, H. Chang and Y. Hachisu,
“A Software Architecture for Web-based Informa-
tion Systems,” (in Japanese) to appear in Proc. of
IPSJ Object-Oriented Symposium 2002.

[10] A. Kumazaki, M. Noro, H. Chang and Y.
Hachisu, “An application Framework for TCP /TP
Applications,” to appear in Proc. of COMP-
SAC2002.

| ! }

Implementation Understand DC's| Design Specification
l of DC Specification for MC

! l

]
O

(d) A Model-Level Component Uses a Design-Level Component

l

Design Specification
for MC

Understand
MC's Specification
Implementation
of DC

Implementation
of MC

(e) A Design-Level Component Uses a Model-Level Component

1?1

Customization Understand IC’s
of IC Specification

-

Implementation

(f) A Design-Level Component Uses an Implementation-Level Component

?

Ic l l

Implementation Understand DC'’s
l of DC Specification

Customization
of IC

(9) An Implementation-Level Component Uses a Design-Level Component

Design Specification

for

Understand MC's
Specification

Implementation

of MC Customization

of IC

(h) An Implementation-Level Component Uses a Model-Level Component

| !

Understand Design Specification
l IC’s Specification for MC

(i) A Model-Level Component Uses an Implementation-Level Component

[11] “Separation of Concerns in Early Stage of Frame-
work Development,” Workshop on Multidimen-
tional Separation fo Concerns, OOPSLA2001.

[12] A. Navasa, et al, “Aspect Oriented Soft-
ware Architecture: a Structural Perspective,”

http://wwwhome.cs.utwente.nl/~bedir/Research.htm.

[13] M. Noro, “A Software Architecture for Vending
Machine Control,” Proceedings of ISFST ’97, Nov.
1997.

[14] M. Shaw, and D. Garlan, Software Architecture,
Perspective on an Emerging Discipline, Prentice
Hall, 1996.

[15] O. Spinczyk, et al, “AspectC++: an Aspect-
Oriented Extension to C++,” Proc. TOOLS Pa-
cific 2002.

